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Abstract

Well placement design refers to finding the optimal well locations to install with a set of constraints. This

is important for both petroleum engineering and water resource management. This study presents a novel

optimization method for well placement design in groundwater management. The proposed method, EO-

WPP, is based on the Extremal Optimization (EO) algorithm. EO works by modifying the components of

a solution that contribute the least to its overall performance. EO-WPP extends the EO algorithm to the

fields of groundwater management and well field optimization for the first time. Groundwater Management

program (GWM) is coupled with EO-WPP and used to rank wells in terms of pumping rate, given well

locations. In the first testing phases of this work, EO-WPP was applied to a problem of simple geometry

and a simple synthetic model in order to study its performance and its emergent spatial behaviors. Results

show that the proposed method was faster than Particle Swarm Optimization (PSO) and the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithms. EO-WPP then was applied to a field problem involving the

Aberdeen groundwater model in South Dakota. The results show that EO-WPP was able to generate a

series of possible of well fields that can be used to pump effectively groundwater from the Elm aquifer.
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1. Introduction1

Well placement design refers to finding the optimal well locations to install with a set of constraints2

such as drawdown. This is a common problem found in many fields of natural resource management. In3

the petroleum industry, solving the well placement problem allows the design of optimal well fields that4

can efficiently and economically produce hydrocarbon in reservoirs (Sarma et al., 2008; Feng et al., 2012;5

Nwankwor et al., 2013; Nozohour-leilabady and Fazelabdolabadi, 2016). For water resource management,6

solving the well placement problem can lead to efficient well field design for pumping groundwater or for7

aquifer remediation (Park and Aral, 2004; Bayer et al., 2009; Elçi and Ayvaz, 2014; Wang and Ahlfeld, 1994).8

In previous decades, many algorithms have been developed to solve the well placement problem (Minton,9

2012). These optimization algorithms can be classified into two main categories: global search algorithms10

and local search algorithms.11

Global search algorithms refer to optimization algorithms designed to seek the global minimum or maxi-12

mum of a given optimization problem (Chong and Zak, 2013). Global search algorithms are the common type13

of methods used for well placement optimization (Minton, 2012). Examples of algorithms include differential14

evolution, particle swarm optimization, and genetic algorithms (Elçi and Ayvaz, 2014; Feng et al., 2012;15

Emerick et al., 2009). To improve performance, researchers have also developed hybrids of these methods16

(Nwankwor et al., 2013; Guyaguler et al., 2001). These algorithms gain popularity likely due to their ability17

to avoid local minimums by relying on stochastic methods and evaluating a population of solutions.18

Unlike global search algorithms, local search algorithms are optimization algorithms that are susceptible19

to converging to sub-optimal solutions. But in exchange for the risk of getting trapped at local minimums,20

local search algorithms can reach an optimal solution faster than global search algorithms (Mahinthakumar21

and Sayeed, 2005; Humphries et al., 2014). Local search methods are faster because assumptions are usually22

made for the optimization problem that allows fewer evaluations of the objective function. Reducing the23

number of times for evaluating the objective function is a valuable technique for speed, especially when24

the objective function involves a large numerical model that is computationally expensive. Examples of25

local search algorithms include the Nelder-Mead method, the Broyden–Fletcher–Goldfarb–Shanno (BFGS)26

algorithm, gradient descent algorithms, and other pattern search algorithms (Nelder and Mead, 1965; Liu27

and Nocedal, 1989; Ruder, 2016; Torczon, 1997). To reduce risk of getting stuck on local minimums while28

still retaining the speed of requiring few objective function evaluations, researchers have developed hybrids29

of global and local search optimization methods (Mahinthakumar and Sayeed, 2005; Humphries et al., 2014).30

Our proposed method seeks a similar goal, however we approach the task using the unique perspective of31
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extremal optimization.32

Extremal optimization (EO) is an optimization algorithm introduced by Boettcher and Percus (1999).33

The main heuristic of EO is that in order to improve the performance of a given solution, simply identify the34

least performing component of a solution and replace it with something randomly generated. By iteratively35

changing the worst component of the solution, the performance of the overall solution will improve. After its36

introduction in 1999, EO was used in many disciplines of science and engineering. In mechanical engineering,37

De Sousa et al. (2004) used a variant of EO called generalized extremal optimization to design a heat pipe38

for satellite thermal control. In distributed computing, De Falco et al. (2015) used EO as a part of a load-39

balancing algorithm for clusters of multi-core processors. Additional applications include fractional order40

proportional-integral-derivative (PID) controllers, wind speed forecasting, and spin glass (e.g., Zeng et al.,41

2015; Chen et al., 2018; Boettcher, 2005)42

Although EO has been used in a variety of applications, it has received less attention in hydrogeology.43

This is mainly because EO requires a fitness function that can rank the fitness of each of the components44

of a solution (Boettcher and Percus, 2002). Most optimization algorithms use an objective function that45

outputs a single value. However, EO also needs a function that determines how much each component of46

a solution contributes to the overall objective function. For many problems, such a function might be too47

ambiguous or impossible to define. Variants of EO, such as general extremal optimization (De Sousa et al.,48

2004) try to solve this problem by defining a general way to partition the objective function into components49

that correspond to components of a solution.50

In this work, we introduce EO to the well placement problem in groundwater management for the first51

time and propose a novel component-based fitness function specific for the problem domain, termed as52

Extremal Optimization for the Well Placement Problem (EO-WPP). The EO-WPP algorithm will employ53

this new fitness function to allow the use of EO on well placement problems without significantly changing54

the structure of the original EO algorithm. We show that EO-WPP with its unique fitness function allows55

the algorithm to adopt both the local-minimum avoidance behavior of global search algorithms and the speed56

of local search algorithms. By the nature of the heuristic used to replace the worst-performing components,57

EO-WPP also displays emergent spatial behaviors that are useful for the design of well fields. A simple58

geometry and synthetic examples will be used to demonstrate the method. The method then will be applied59

in Aberdeen aquifer in South Dakota for a field example of the well placement problem.60
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2. Methodology61

2.1. Groundwater Flow Equation62

The governing equation for three-dimensional transient groundwater flow in heterogeneous and anisotropic63

conditions is given as follows (Anderson et al., 2015):64
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where K is hydraulic conductivity, h is hydraulic head, Ss is specific storag,e and t is time. W ∗ is a source65

or sink. In this study, MODFLOW(McDonald et al., 2003), a modular finite-difference flow model program66

developed by the U.S. Geological Survey (USGS), is used to solve the groundwater flow equation numerically.67

A groundwater model is a conceptual representation of a real aquifer. When building a model, errors68

can be introduced through measurement, conceptual framework, or other sources (Anderson et al., 2015).69

This means that if a well-field configuration is optimized using a groundwater model, the optimal solution70

for the model could be different from the optimal solution for the real aquifer. For example, optimization71

algorithms may place wells next to constant head boundaries since there is effectively no limit on the flow72

rate. When interpreting any well field solution, ensure that the solution takes advantage of the underlying73

hydrogeological structure of the study area, instead of improbably using characteristics only unique to the74

computer model.75

2.2. Extremal Optimization for Well Placement Problems (EO-WPP)76

The EO-WPP algorithm is very similar to the original EO algorithm that was proposed by Boettcher and77

Percus (1999). The main difference is how the fitness function was defined and how the least fit component78

of the solution was adjusted.79

The fitness function quantifies how much a given component of the solution contributes to the overall80

performance of the solution. Within the context of well placement problems, the fitness function determines81

how much a given pumping well contributes to the overall discharge of the well field. For EO-WPP, the82

fitness function evaluated at a well is defined to be the total volume of water produced by the well after83

operating at its optimal pumping rates for all time periods. Therefore, wells with a high fitness will produce84

a greater cumulative discharge than other wells. One of the main assumptions in EO-WPP is that the well85

which produces the most amount of water with the constraint of drawdown is the most fit well. The goal of86

EO is to adjust the components of a solution in order to maximize their fitness. Thus the goal of EO-WPP87

is to adjust the location of the wells such that their cumulative output is maximized.88
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The purpose of EO-WPP’s fitness function is to determine optimal pumping rates, given the well locations.89

These optimal pumping rates are computed using a separate optimization method. For this study, EO-WPP’s90

fitness function was implemented using a computer program called GWM (Ahlfeld et al., 2005) (see Section91

2.4 for details about GWM). However, any other local optimization algorithm can be used. EO-WPP only92

uses the fitness function to identify the best and worst wells. Therefore, the accuracy of the optimal pumping93

rates only needs to be good enough to identify the best and worst wells. Approximations of the optimal94

pumping rates can be quickly reached by adjusting the convergence criterion of the optimization algorithm.95

This modification reduces the computational requirement for evaluating the fitness function.96

In the original EO algorithm, the least fit component is replaced by a randomly generated component.97

In EO-WPP, the least fit well is removed and replaced with a new well that is randomly placed near the98

most fit well. This heuristic assumes that the best place to put a new well will likely be near the best well.99

The heuristic allows the EO algorithm to quickly converge toward an optimal solution, but it also generates100

a bias and makes the algorithm more susceptible to being trapped at local maximums. This can be resolved101

by implementing the τ -EO method introduced by Boettcher and Percus (1999).102

2.3. EO-WPP Algorithm103

The original EO algorithm was detailed in Boettcher and Percus (1999). The proposed EO-WPP has104

the following steps:105

Step 1: Initialize the solution matrix106

The algorithm begins by initializing the solution matrix, W . For EO-WPP, W is the matrix that107

contains the locations of all the wells that are to be optimized. When expanded, the locations of the108

wells can be encoded as such:109

W =



~w1

...

~wi

...

~wI


=



x1 y1
...

...

xi yi
...

...

xI yI


(2)

where I is the total number of wells, ~wi is the location row vector of the ith well, and xi, yi are the110

row and column locations of the ith well. The goal of EO-WPP is to determine the W matrix that111

maximizes the objective function. It does this by starting with an initial, randomly generated W112

matrix, and then iteratively adjusting this matrix until it converges onto a solution.113
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When initializing the solution matrix, a given number of wells are randomly placed within the114

model domain. This must be done in way that makes the constraint function return True, as shown115

below. The constraint function, C, is the function that checks if a given solution matrix respects all116

constraints. For EO-WPP, the C function checks spatial constraints between wells and boundary117

conditions. Examples of spatial constraints may include minimum distances to the boundary or118

defining areas of the domain to avoid. Another important spatial constraint is that no two wells can119

have the same location or occupy the same cell:120

C(W ) =


C(W ) = True if W respects all constraints

C(W ) = False if W fails to meet all constraints

(3)

The constraint function simply returns True if the solution matrix respects all constraints and121

returns False if it does not. When initializing the solution matrix, the generated matrix must satisfy122 (
C(Wl=0) = True

)
. Constraints for the drawdown and the pumping rates are handled by the fitness123

function.124

Step 2: Evaluate the fitness function125

Given the solution matrix, W , the corresponding fitness vector is calculated. The fitness vector, Q,126

is the vector that contains the fitness for all the components of the solution. For EO-WPP, Q is the127

vector that contains the cumulative volumes for each of the wells. The vector can be constructed as128

such:129

Q =



q1
...

qi
...

qI


(4)

where qi is the cumulative volume of water the ith well produces after operating through all time130

periods using its optimal pumping rates. Note that if only one stress period exists, then qi can also131

represent the pumping rate of the ith well.132

To calculate the fitness vector, the fitness function is applied to the solution matrix. The fitness133

function, F, is the function that takes a solution matrix as its input and determines the corresponding134

fitness vector. For EO-WPP, F takes the well locations, W , and calculates their corresponding fitness,135
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Q:136

Q = F(W ) (5)

With every iteration of EO-WPP, the previous optimal values are discarded and new optimal values137

are recalculated. This is because the placement of new wells may affect the optimal values of adjacent138

wells. When implementing the F function, its computer code incorporates both the groundwater139

model and the optimization program that determines the optimal pumping rates. In this paper, the140

groundwater flow model was simulated by MODFLOW (McDonald et al., 2003) and the pumping141

rate optimization was performed by GWM (Ahlfeld et al., 2005). Note that the initial pumping rates142

are determined by the optimization program used. For this study, GWM initializes the pumping143

rates to 20% of their maximum pumping rate.144

Step 3: Remove the worst well

With the new fitness vector, the worst well is identified. The worst well is the well that has the

lowest fitness value:

~wworst = {~wiworst ∈W : qiworst ≤ qi ∀qi ∈ Q} (6)

After the worst well is identified, it is removed from the solution matrix. This is done by defining a145

new solution matrix, W ′, that contains everything but the worst well:146

W ′ = {~w ∈W : ~wworst /∈W ′} (7)

Step 4: Insert a new well

To replace the removed well, a new well is generated. The location of the new well ~wnew is dependent

on the location of the best well, ~wbest, the maximum distance between wells, dmax, and a random

vector, ~u:

~wbest = {~wibest ∈W : qibest ≥ qi ∀qi ∈ Q} (8)

dmax = maximum Euclidean distance between any two wells within W ′ (9)

~u = random vector with a length within (0, 1] and the same dimensions as ~w (10)

~wnew = ~wbest + dmax~u (11)
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The new well is placed at a random location near the best well (Equation 11). The new well then is147

inserted into the solution matrix, W ′, to form a new solution matrix, W ′′:148

W ′′ = {~w : (~w ∈W ′) or (~w = ~wnew)} (12)

Before moving on, the new solution matrix, W ′′ must satisfy all constraints
(
C(W ′′) = True

)
. If149

it does not
(
C(W ′′) = False

)
, then a new ~u, ~wnew and W ′′ is generated and calculated until the150

new well field respects all constraints
(
C(W ′′) = True

)
. After W ′′ passes all constraint checks, the151

temporary well field becomes accepted as the new well field configuration for the current iteration152

of the algorithm

(
W ′′

C(W ′′)=True−−−−−−−−−→W

)
.153

Step 5: Check if a new best solution is found154

To check the performance of the new solution, its objective function is evaluated. O is the objective155

function that EO-WPP tries to maximize. It is a function of the location of the wells, W , and can156

be calculated with the fitness function, F:157

O(W ) = F(W ) ·


1

...

1


I×1

=

I∑
i=1

qi (13)

Unlike the fitness function, the objective function does not require a separate optimization process.158

The objective function simply takes the results of the fitness function, Q, and reports the sum159

of the fitness values of all the components. In other words, the objective function represents the160

cumulative volume of water a given well field produces, when their optimal rates are applied for all161

stress periods. The objective function of the new well-field configuration, W , is calculated and if the162

result is strictly greater than the best solution found so far
(
O(W ) > O(WBest)

)
, then W is saved163

as the new best solution, WBest.164

Step 6: Check if the stopping criterion is met165

Steps 2 to 5 are repeated for a set number of iterations, L. However, if computational power is not166

a limitation, then L should be set to the maximum value, LConvergence. LConvergence is the number167

of EO-WPP iterations such that the performance of WBest does not increase with iteration numbers168

9



greater than LConvergence:169

L =

{
0 ≤ L ≤ LConvergence : WBestLConvergence

= WBestLConvergence+k
∀k ∈ N

}
(14)

After performing L iterations, the algorithm simply reports the best solution found, WBest, as the170

final result.171

Figure 1 shows the flowchart of EO-WPP method. Its algorithm is shown on Algorithm 1.172

Algorithm 1: Extremal Optimization for Well Placement Problems (EO-WPP)

begin
Let: L = Total number of iterations
Let: l = Current iteration of the algorithm
Let: W = The solution matrix (the set of all well locations)
Let: ~wi = The location of the ith well, ~wi ∈W )
Let: qi = The fitness of the ith well of solution W , qi ∈ Q
Let: O(W ) = The objective function evaluated for solution W
Let: F(W ) = The fitness function evaluated for solution W
Let: C(W ) = The constraint function evaluated for solution W

Let: WBest =
{
WBest : O(WBest) ≥ O(Wl) ∀l ∈ {0, 1, 2, · · · , L}

}
, i.e. the best solution found

Set: L =

{
0 ≤ L ≤ LConvergence : WBestLConvergence

= WBestLConvergence+k
∀k ∈ N

}
Set: l = 0
Set: W = Random initial configuration such that C(W ) = True
Set: WBest = W
while l ≤ L do

Set: l = l + 1
Calculate: Q = F(W )
Find: ~wworst = {~wiworst

∈W : qiworst
≤ qi ∀qi ∈ Q}

Find: ~wbest = {~wibest ∈W : qibest ≥ qi ∀qi ∈ Q}
Let: W ′ = {~w ∈W : ~wworst /∈W ′}, i.e. remove ~wworst from the solution
Let: dmax = Maximum Euclidean distance between any two wells within W ′

Let: ~u = Random vector with a length within (0, 1] and the same dimensions as ~w
Let: ~wnew = ~wbest + dmax~u
Let: W ′′ = {~w : (~w ∈W ′) or (~w = ~wnew)}, i.e. add ~wnew to the solution
while C(W ′′) = False do

Create new: ~u
Recalculate: ~wnew = ~wbest + dmax~u
Recalculate: W ′′ = {~w : (~w ∈W ′) or (~w = ~wnew)}

Accept W = W ′′ unconditionally
if O(W ) > O(WBest) then

Set: WBest = W

return WBest
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2.4. Groundwater Management Program (GWM)173

GWM is a Groundwater Management Process optimization program and its purpose is to determine the174

pumping rates which maximizes the overall output of a given well field while respecting a set of constraints.175

The objective function maximized by GWM can be described as (Ahlfeld et al., 2005):176

N∑
n=1

βnQwnTQwn
+

M∑
m=1

γmExmTExm
+

L∑
l=1

κlIl (15)

where:177

βn is the cost or benefit per unit volume of water withdrawn or injected at well site n;178

γm is the cost or benefit per unit volume of water imported or exported at external site m;179

κl is the unit cost or benefit associated with the binary variable Il;180

Qwn is the withdrawal or injection rate at well site n;181

Exm is the import or export rate at external site m;182

Il is a binary variable at site l. Il = 1 or 0;183

TQwn
is the total duration of flow at well site n;184

TExm is the total duration of flow at external site m;185

N,M,L are the total number of flow-rate, external, and binary decision variables;186

Note that the objective function is composed of a summation term for the wells, a term for any external187

sources, and a term for any external sources with a binary attribute. For this work, only the summation term188

was used and the other two were disregarded (set to zero). This was done to simplify synthetic examples189

during testing. However, EO-WPP can operate with the entire objective function. To modify the objective190

function to give the cumulative water output, let βn, gammam, and κl = 1.191

If the optimization problem is nonlinear, then GWM uses a technique called using Sequential Linear192

Programming (SLP) to maximize the objective function (Ahlfeld et al., 2005). SLP works by calculating193

the response matrix, and then using this matrix and the list of constraints to calculate how to adjust the194

parameters (such as pumping rates) to maximize the objective function. The response matrix, also termed195

the Jacobian matrix, is a matrix of partial derivatives of the objective function with respect to each of196

the parameters of interest. The elements of the response matrix are calculated by the finite-difference197

perturbation method. For an optimization problem with N parameters to adjust, the objective function198
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(and so the groundwater model) runs N+1 iterations every time the response matrix is calculated. For199

linear optimization problems, the response matrix only needs to be calculated once. Unfortunately, most200

groundwater models contain rivers or other head-dependent boundaries, thereby making these optimization201

problems nonlinear. With nonlinear optimization problems, a new response matrix is calculated every time202

the parameters are adjusted. Compared to linear optimization problems, the need for repeated calculations203

of the response matrix makes optimizing nonlinear problems a computationally expensive process.204

3. Demonstration of EO-WPP205

3.1. Case 1: Simple Geometric Problem206

To examine the spatial behaviors of EO-WPP, the algorithm was first tested on an optimization problem207

with simple geometry. The optimal solutions for these problems are simple and known, so these problems208

can give insight into how EO-WPP converges toward a solution.209

3.1.1. Set-up of Problem210

One of the geometry problems is a point target problem. Given a set of points randomly placed on a211

2D plane, the goal of EO-WPP is to adjust the position of the points to be as close to the origin point as212

possible. The fitness function used by EO-WPP is just the distance from the point to the origin:213

Fitness of ~wi = ||~wi||L2
= 2

√
x2i + y2i (16)

Unlike the well placement problem, the goal for this optimization problem is to find a solution that minimizes214

the objective function. Simply multiplying the fitness function by negative one converts the minimization215

problem into a maximization problem. Otherwise, all other mechanisms of the algorithm remain the same.216

With every iteration of EO-WPP, points that are farthest from the origin have the lowest fitness and so will217

be removed. A removed point will be replaced by a point that is randomly placed near the point of highest218

fitness, which is the point that is closest to the origin. Points are free to be placed anywhere within the219

bounds of the domain. The location of these points are defined on a continuous 2D Cartesian plane that220

extends from -100 to 100 in both the x and y axis.221

The parameter I, the number of points, was set to three, six, and twelve points during testing to observe222

how EO-WPP would respond with increasing numbers of points. Ten runs for each set of points were223

performed and the average performances with each set of runs were calculated and compared. Performance224

of the overall solution was measured by the average distance between the points and the origin.225
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To test for how the heuristic for placing a new well affects the performance of EO-WPP algorithm, a226

comparison of three different placement heuristics was performed with the simple geometric problem used227

as a benchmark. The first heuristic randomly places the new well anywhere within the domain. The second228

heuristic places the new well within a circle centered around the best well. The radius of this circle (the229

placement radius) is set to the distance between two different and randomly chosen wells. The third heuristic230

is similar to the second heuristic except that it sets the placement radius equal to the maximum distance231

between any two wells. This is also the heuristic used by the proposed EO-WPP algorithm. For each232

heuristic, 100 runs were performed, with each run consisting of 300 iterations of the EO-WPP algorithm.233

Each run was initialized with a random starting positions for the wells. The number of wells was set to six234

for all tests.235

The EO-WPP algorithm was also compared against particle swarm optimization (PSO) and the Broyden-236

Fletcher-Goldfarb-Shanno (BFGS) algorithm. PSO was selected because it is a popular global search opti-237

mization algorithm. Likewise, the BFGS was also selected because it was a common local search algorithm.238

By comparing EO-WPP to PSO and BFGS, EO-WPP’s performance can be compared to different modes239

of optimization. For each method, 100 runs were performed, with the goal of optimally placing six wells.240

The number of times for evaluating the simple geometric objective function was recorded to allow proper241

comparison among the three optimization methods.242

3.1.2. Results243

Figure 2 displays the results for running EO-WPP on the point target problem with various numbers244

of points, I. The results show that the performance of the EO-WPP algorithm is partially sensitive to245

the number of points to optimize for. For all values of I, the algorithm converged toward a solution that246

minimized the objective function. On average, EO-WPP quickly generated a solution with the lowest247

objective function value when I = 6. For values larger than I = 6, the algorithm took longer to converge248

toward a solution because each iteration of EO-WPP can only move one point. With larger numbers of249

points, more iterations are needed to adjust the entire set of points. For values smaller than I = 6, EO WPP250

initially outperformed the I = 6 curve. However, around 10 iterations, the I = 3 curve changes into slower251

rate, thereby losing to the I = 6 curve by iteration 20. This change of EO-WPP’s performance for small252

point numbers was from premature convergence.253

Figure 3 displays the results of the three different new-well placement heuristics. In the figure, the mode254

total fitness value (objective function value) is plotted against the number of iterations of the EO-WPP255

algorithm. The results show that among the three heuristics, the best heuristic is to set the placement256
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radius equal to the maximum distance between any two wells within the well field. This is the same heuristic257

used by the proposed EO-WPP algorithm (Algorithm 1). For the heuristic of randomly placing the well258

within the domain, the algorithm converges slower than the other two methods. For the heuristic where the259

placement radius was set to the distant of two distinct and randomly chosen wells, it initially converged the260

fastest, but the algorithm plateaus and fails to converge any further after 25 evaluations.261

Figure 4 displays the results for comparing EO-WPP to the PSO and BFGS optimization algorithms. The262

mode objective function value is plotted against the number of times the objective function was evaluated.263

The results indicate that EO-WPP performs better than both the PSO and BFGS algorithms, with EO-264

WPP achieving near full convergence after just 60 evaluations of the objective function. BFGS then follows265

up as the second best performer, leaving PSO as the slowest algorithm for this benchmark.266

3.2. Case 2: Synthetic Groundwater Model267

To test how the EO-WPP algorithm would perform on optimization problems with a groundwater model,268

a synthetic groundwater model was constructed. The synthetic example was built and based on the bench-269

mark example provided by Ahlfeld et al. (2005) in the paper that was used to verify the GWM optimization270

algorithm.271

3.2.1. Set-up of Synthetic Model272

The modeling domain was one layer discretized by 25 by 30 grid of cells. All cells were squares and have

a side length of 200 ft. The model was bounded by constant heads that varied from 86 to 100 ft at the

top and bottom of the model with no-flow boundary conditions to the left and right. In the middle of the

model was a river, composed of three stream segments, with flow from left to right. All stream segments

were 20 ft wide and had a stream bed conductance of 20,000 ft2/day. The main stream had a slope of

0.0025, whereas the tributary stream had a slope of 0.0010. Figure 5 shows details for the modeling domain.

To test how EO-WPP handles constraints, four conditions for streamflow depletion were placed along the

river. The streamflow depletion constraints were defined as such (Ahlfeld et al., 2005):

Qsdr = (Qsfr)0 −Qsfr (17)

Qsdr ≤ Qsdur (18)

Streamflow depletion, Qsdr, is defined as the difference between the initial streamflow at stream location273

r at the end of the stress period, (Qsfr)0, and the streamflow calculated at the location at the end of the274
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stress period after implementation of the optimal pumping strategy, Qsfr. The upper bound streamflow275

depletion constraint values, Qsdur , and the times when the constraints are enforced were different for each276

site. This was done to test how EO-WPP handles constraint complexity across different stress periods. The277

transmissivity for the model was set to the synthetic heterogenous field shown on Figure 6.278

For simplicity of analysis, the transmissivity was set to either 50 or 500 ft2/day. Transmissivity was 500279

ft2/day across most of the model except for three regions of low transmissivity. The first region was at the280

top and bottom of the model where the constant-head boundaries were located. Any optimization algorithm281

can “cheat” in maximizing the objective function by pumping near constant-head boundaries (where nearly282

infinite flow is possible with little or no change of hydraulic head). To deter this behavior, low-transmissivity283

cells were placed near the boundaries to prevent EO-WPP from taking advantage of this edge-effect. The284

second region of low transmissivity was in the left-middle section of the model domain. This was done to see285

how EO-WPP would handle a situation in which a large region of the model would be a non-ideal area to286

place wells. The hope was that after placing a well in this region, the algorithm would quickly learn to avoid287

the area. The third low-transmissivity region was in the lower-right section of the model. Prior tests with288

this model have shown that the best place to put the wells was at the bottom right side of the model. By289

placing a region of low transmissivity in the same area, EO-WPP was forced to find a well-field solution that290

somehow navigated around this low-transmissivity region. The groundwater model simulated a three-year291

period, divided into 12 stress periods (one stress period for each season). The aquifer had a homogenous292

recharge at a rate of 0.005 ft/day in the winter, 0.002 ft/day in the spring, 0 ft/day in the summer, and293

0.001 ft/day in the fall.294

The goal for EO-WPP was to determine the best locations to place four wells. The wells ran at a single295

pumping rate for the entire three-year period. The pumping rates for the wells could vary between zero and296

50,000 ft3/day. The drawdown limit for all wells was set to 10 ft. The task of GWM was to determine the297

optimal rates that maximized the cumulative output of the field for a given well field configuration while298

respecting all constraints. For the tests, EO-WPP was given 128 iterations to find an optimal solution. The299

entire EO-WPP process was restarted 128 times with a random initial well-field solution each time. This300

was done to determine EO-WPP’s average performance. The performance of the EO-WPP algorithm was301

measured by using the cumulative output of the optimal field. The unit and absolute value of the cumulative302

output was not important because these values were only compared to each other. Therefore, the cumulative303

output could be treated as the total fitness of a solution.304
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3.2.2. Results305

A sample of a well field solution generated by EO-WPP is shown on Figure 7. The results of the test306

show that EO-WPP can converge toward optimal well solutions. On average, the well-field solutions involved307

wells that were placed close to the river (Figure 5). This is reasonable because of the high conductivity the308

river offered. EO-WPP often placed the wells on the bottom-right side of the model domain and next to309

the southeastern stream because the water in the model was flowing into that region. While converging,310

EO-WPP was able to generate well-field solutions that avoided the low transmissivity regions. This shows311

that relying on a global constant-drawdown constraint works as a method for EO-WPP to identify regions of312

low productivity. Many of the solutions also had wells that were placed far from streamflow constraint sites.313

Therefore, the EO-WPP algorithm generated well-field solutions that took constraint sites into consideration.314

For EO-WPP’s overall performance, Figure 8 shows the statistics computed for all 128 runs. Case 2 results315

shows that the EO-WPP functions, and that it can statistically perform better than the best-out-of-N316

algorithm. In other words, on average it is computationally more efficient to run the EO-WPP algorithm317

N times than to randomly generate N well field solutions and report the best one. For this groundwater318

model, based on the 128 EO-WPP runs (Figure 8), a randomly generated well-field solution had a total319

fitness between 12,000 and 42,000 with a median of 30,000. With each iteration, the entire distribution of320

the solution fitness improves. By the 30th iteration, the median solution fitness matched and exceeded the321

maximum fitness of the zeroth iteration of the solution. That means for this groundwater model, there is322

a 50% chance that running the EO-WPP algorithm for 30 iterations will yield a well-field solution that is323

better than what could be achieved by randomly placing wells in the model. This method of comparing324

with the best out of N algorithm is a valid technique that has been performed by other groups such as Feng325

et al. (2012). With each EO-WPP iteration, the groundwater model was evaluated 15 times. So, after 30326

iterations the model ran a total of 450 times. Note that the number of times for evaluating the groundwater327

model is dependent on the optimization function used by the fitness function.328

3.3. Case 3: Aberdeen Groundwater Model329

After developing and testing EO-WPP with the synthetic example, the EO-WPP algorithm was applied330

to the Aberdeen aquifer, in South Dakota (for model details, see Valder et al. (2018)).331

3.3.1. Set-up of Aberdeen Model332

The City of Aberdeen is in Brown County in the northeastern part of South Dakota. The study area333

encompassed 490 mi2 north of Aberdeen in the James River Lowland and Lake Dakota Plain physiographic334
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provinces (Figure 9). The study area included the glacial aquifer system north of Aberdeen between Foot335

Creek and the James River, because that area supports the City’s current municipal well field. Currently,336

most of the city’s water is supplied from the Elm River. When the streamflow of the river becomes too low,337

water is pumped from a well field seven miles north of Aberdeen. These wells were completed in the Elm338

aquifer, a shallow alluvial aquifer system in hydraulic connection with the Elm River. Ideally, the EO-WPP339

algorithm paired with the Aberdeen groundwater model can provide insight on where to place new wells to340

efficiently use the Elm aquifer.341

The Aberdeen groundwater model was presented in Valder et al. (2018). The Aberdeen model consisted342

of seven layers. Three layers were for the Elm aquifer, the Middle James aquifer and the Deep James aquifer,343

and the remaining four layers were confining layers that bound the three aquifers. The Elm aquifer (Layer344

2 from the top) is of interest because it is the shallowest and most accessible aquifer. The average thickness345

of the Elm aquifer is 24 ft and the average depth to the aquifer is 30 ft. The model was discretized into a346

finite-difference grid consisting of 368 rows and 410 columns with a cell size of 200 by 200 ft. The model was347

bounded by recharge, river, drainage, and well boundary conditions. The model contained 99 stress periods348

that simulates the years 1975 to 2015. The revised model used the USGS finite-difference groundwater-flow349

model MODFLOW-NWT to calculate all water budgets and flows. Additional details for the model are in350

the report by Valder et al. (2018).351

3.3.2. EO-WPP for the Aberdeen Model352

The goal for EO-WPP was to determine the best way to place six wells. The number of wells used353

was inspired by the results of Case 2 (Figure 8). In the model, these wells ran at a constant pumping rate354

for one year (October 1974 to October 1975). All pumping wells were installed in the Elm aquifer (Layer355

2) and all wells were subject to a drawdown constraint of 10 ft. To prevent EO-WPP from exploiting356

boundary conditions, a distant constraint was defined such that all wells were at least 600 feet away from357

rivers, boundaries, and each other. To deter ”cheating,” wells also were forced to be placed in a bounded358

region within the model domain. For the first optimization run of EO-WPP, the well locations are bounded359

by 10 ≤ Row ≤ 300 and 100 ≤ Column ≤ 300. For the remaining runs, the extent of the bounding region360

was reduced to 100 ≤ Row ≤ 300. Four runs of the EO-WPP algorithm were performed. Each run involved361

initializing the solution with six randomly placed wells then iteratively improving the solution by applying362

EO-WPP for 100 iterations. Each run took approximately two days to complete when performed on a single363

Intel Core i7-6600U CPU running at 2.8GHz.364

With each iteration, the majority of the time was spent on calculating the fitness function. The fitness365
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function requires the optimal pumping rates for a given well-field solution. These pumping rates were deter-366

mined with GWM, which was set to solve for the optimal pumping rates using SLP. To reduce computation367

time, the convergence criterion used by SLP was adjusted such that the SLP loop terminates early. Although368

this reduced the accuracy of the optimal values, it does not significantly affect the performance of the fitness369

function. The main purpose of the fitness function was to identify the well that will likely produce the least370

amount of water. Therefore, an approximation of the optimal pumping rates is enough. This method is371

similar to how τ -EO operates. Introduced by Boettcher and Percus (1999), τ -EO is a version of EO that372

randomly removes one of the low fitness components, instead of strictly removing the component of lowest373

fitness. This allows τ -EO to behave like a global search algorithm and avoid local minimums. By using374

approximately optimal pumping rates, EO-WPP exhibits the same behavior as τ -EO375

3.3.3. Results of Aberdeen Model376

Results of the four runs show that EO-WPP was able to optimize the well field and converge toward377

a solution. For all runs, EO-WPP was able to perform at least 90% of optimization progress within 50378

iterations. The remaining iterations were spent on refining the solution. This agreed with results found with379

the synthetic examples in Case 2. An example of EO-WPP’s optimization progress during a run is shown380

on Figure 10. With each iteration, the fitness of the best solution steadily increased, yet the fitness of the381

current solution either increased or decreased with each iteration. In Figure 10 during iteration 40 to 60,382

the fitness of the current solution dropped significantly before later recovering. This behavior was expected383

because removing the worst well and replacing it with a randomly placed new well did not guarantee an384

improvement of the total field output. Even without this guarantee, the fitness of the current solution385

still generally increased with increasing number of iterations. This indicates that the heuristic of strictly386

modifying the worst performing well allowed EO-WPP to generate new-well field solutions that were more387

likely to be better than previous solutions.388

For all runs, the EO-WPP algorithm placed wells in locations that seemed to correlate with the horizontal389

hydraulic conductivity of the layer the wells were pumping from (Layer 2). The well-field solutions and the390

horizontal hydraulic conductivity are shown on Figure 11. In the first run, EO-WPP placed some wells391

close to the top boundary (Figure 11a). To ensure that EO-WPP was not taking advantage of boundary392

conditions, the remaining runs had the bounding region adjusted so that wells were placed below row 100.393

The effects of adjusting the bounding region affected the total output of the well field. Before the adjustment,394

the maximum well field output was 2.6× 108 ft3/yr. After the adjustment, the well field output was reduced395

to a maximum of 1.3× 108 ft3/yr.396
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Regardless of the bounding region, EO-WPP consistently placed a majority of the wells near or upon397

sites with high horizontal hydraulic conductivity. Recall that EO-WPP only uses pumping rates and draw-398

down at the wells. The algorithm does not use explicit knowledge of hydraulic conductivity. Yet for the399

Aberdeen groundwater model, the well-field solutions appear to correlate best with the horizontal hydraulic400

conductivity. This indicates that the horizontal hydraulic conductivity plays a crucial role when determining401

optimal well-field configurations. Well locations that deviate from peak horizontal hydraulic conductivity402

were caused by EO-WPP’s consideration of other factors such as recharge, aquifer thickness, or vertical403

hydraulic conductivity.404

4. Discussion405

Within the EO-WPP algorithm, the placement of the new well is dependent on the location of the best406

well. This was done to introduce a clustering behavior into the EO-WPP algorithm. Though it seems like407

this placement heuristic may cause the EO-WPP algorithm to get stuck at local minimums, our results show408

that by abiding to certain guidelines, this can be avoided. For example, Figure 2 shows that with a low409

number of points, EO-WPP is more likely to display behavior that causes stagnation at local minimums. In410

Figure 2, this premature convergence behavior can be seen in the curve for I = 3. Note that by 10 iterations,411

the slope of the curve changes significantly. Yet for the other two curves, this change of slope does not exist.412

This is because with a low number of points, it becomes more likely for the points to become too close to each413

other and cause premature convergence. For a sufficiently large number of points, this behavior disappears.414

Based on these results, there must be at least six points to ensure EO-WPP does not exhibit this behavior.415

The EO-WPP algorithm places the new well within a certain distance from the best well. This distance,416

called the placement radius, is set to be the maximum distance between any two wells within the well field.417

The results on Figure 3 show that this placement heuristic is ideal for the EO-WPP algorithm. If the418

placement radius was set too small, such as the distance between two random and distinct wells, then the419

clustering behavior becomes too strong and causes EO-WPP to converge prematurely. In Figure 3, this420

shows as an early plateau in the performance curve. If the placement radius was set too large, such as421

randomly placing the new well anywhere in the model domain, then EO-WPP converges too slowly towards422

the solution.423

EO-WPP’s placement heuristic introduces a clustering behavior that can be sensitive to the configuration424

of the initial solution. To ensure the initial solution does not have an influence in the shape of the final425

solution, EO-WPP must iterate a larger number of times. With a large number of iterations, EO-WPP’s426
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stochastic mechanisms allow the algorithm to properly explore the search space before converging towards427

a set of solutions. This was shown to be true in the results for the synthetic model (Figure 7) and the428

Aberdeen model (Figure 11). For both cases, the EO-WPP algorithm generated very similar solutions, even429

when going through the EO-WPP algorithm with 100 different, randomly generated initial solutions. Tests430

show that as EO-WPP’s performance reaches its stall limit, the solutions begin to look similar to each other.431

This makes sense since the number of possible well field configurations decreases as the performance of these432

solutions approach the global optimum value. To gain greater confidence in the stability of the solutions,433

multiple instances of EO-WPP can be ran, with the iteration process terminated once all instances generate434

the same solution.435

EO-WPP is essentially a combination of mechanisms from both global and local search algorithms. EO-436

WPP relies on a population of wells, a technique similar to the population mechanisms used by global search437

algorithms. EO-WPP also operates on a single well field solution and modifies the solution based on the438

information gained by the solution’s components. This mechanism is similar to how local search algorithms439

operates. EO-WPP combines these techniques in a way that allows it to avoid local minimums and quickly440

converge towards a solution. Figure 4 shows that at least for the simple geometric case, EO-WPP converges441

faster than the PSO global search algorithm and the BFGS local search algorithm.442

Another advantage EO-WPP provides is its ability to find well field solutions with the wells close to each443

other. Figure 11 shows EO-WPP’s clustering behavior found solutions where some wells are nearby each444

other (e.g. Run 2 and Run 3). This behavior is desirable for well field design since reducing distances between445

wells can reduce the amount of infrastructure needed to connect the wells together. What is interesting about446

this behavior is that it is not explicitly defined in the objective function or in the constraints. Instead, this447

spatial behavior emerges from the definition of the placement heuristic.448

5. Conclusions449

This paper introduced a novel well placement optimization algorithm, EO-WPP, which was inspired by450

the optimization algorithm called Extremal Optimization. EO-WPP works by removing the least productive451

wells and replacing them with new wells placed randomly near the most productive wells. By following this452

heuristic, EO-WPP can quickly generate well fields optimized for cumulative well-field output.453

A simple geometric benchmark shows that EO-WPP was able to perform faster than common global454

search and local search methods. A synthetic groundwater model shows that with a large enough well count455

and number of iterations, EO-WPP was able to avoid local minimums and yield consistent well field solutions.456
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Results also verify that EO-WPP exhibits an emergent spatial behavior of clustering, a behavior that is useful457

during the design of optimal well fields. EO-WPP then was applied to the Aberdeen groundwater model.458

EO-WPP was able to generate multiple potential well field solutions that maximized total water discharge459

from the Elm aquifer while respecting drawdown and spatial constraints. The locations of the wells indicated460

that the horizontal hydraulic conductivity was an important factor when designing a well field for the region461

north of Aberdeen.462

Although EO-WPP was applied only to a model built to help the City of Aberdeen, the methods in-463

troduced in this paper are applicable to groundwater management in general. EO-WPP can be used for464

designing well fields to use groundwater resources efficiently. Placement optimization problems extend be-465

yond groundwater management, and the methods introduced by EO-WPP can be applied to other fields466

such as mining operations, petroleum production, groundwater monitoring, and more.467
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Figure 1: Flowchart of the EO-WPP algorithm.
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Figure 3: The average performance curve of the EO-WPP algorithm with various heuristics for placing a new well. Plotted
is the mode objective function value plotted against the number of iterations of the EO-WPP algorithm. Note that the best
performing heuristic is where the new well is placed within a circle centered at the best well with the radius of the circle
(placement radius) is set to the maximum distance between any two wells. This is the heuristic used by the proposed EO-WPP
algorithm.
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Figure 4: The average performance curve of three optimization algorithms on the simple geometric problem. The proposed
method EO-WPP was compared against particle swarm optimization (PSO) and the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm. Plotted is the mode objective function value plotted against the number of times the objective function
was evaluated. Note that EO-WPP converges onto the solution faster than PSO and BFGS for this benchmark.
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Figure 5: Diagram of the size and dimensions of the synthetic modeling domain. The domain was a 25 by 30 grid of square cells
with a side length of 200 feet. The model was bounded by constant heads at the top and bottom of the model, with no-flow
boundary conditions to the left and right. In middle of the model was a river with flow from left to right. Four constraints
for stream-flow depletion were placed along the river. Marked locations for wells are from Ahlfeld et al. (2005), but were not
used in this work. For the optimization problem, the locations of the wells will be constantly changing. This figure is from the
SUPPLY example by Ahlfeld et al. (2005).
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Figure 6: Transmissivity of all the cells of model. The orientation of the grid is the same as in Figure 5. Transmissivity is either
50 or 500 ft2/day. There are four regions of low hydraulic conductivity. The first two region are the at top and bottom of the
model where there are constant head boundaries. The third region is at the left-middle side of model, and the fourth region is
at the lower-right side of the model.
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Figure 7: A well-field solution EO-WPP generated after running for 128 iterations. The blue squares indicate the river cells.
The four circles indicate the location of the four wells. The wells are annotated with their index number. Their color indicates
their rank of fitness. The blue circle is the well with the highest fitness, the red circle indicates the well with the lowest fitness,
and the green circles indicate a fitness that is between the best and the worst. In this well field solution, well 3.0 has the lowest
fitness and well 4.0 has the highest fitness. Figures 3 and 4 show the model set-up.
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Figure 8: The total fitness of the well-field solution plotted against the iteration number. For all runs, the solution fitness
increased with the number of iterations. With additional iterations, the rate of fitness improvement decreased because of EO-
WPP convergene towards the optimal solution. Note that the median crosses the maximum fitness of the zeroth iteration by
the 30th iteration.
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Figure 1.  Locations of study area (model area), streamgages, precipitation stations, and production/observation wells. Inset 
shows model area location in Brown County and physiographic provinces in eastern South Dakota (Flint, 1955).

Figure 9: Locations of study area (model area), stream-gages, precipitation stations, and production/observation wells. Inset
shows model area location in Brown County and physiographic provinces in eastern South Dakota (From Figure 1 of Valder
et al. (2018)).
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Figure 10: The total fitness (cumulative output) of the well-field solution plotted against the iteration number for Run 4 (Figure
11d). Plotted is the fitness of the best solution found (solid line), and the fitness of the current solution (dashed line), for a
given iteration. Notice that the fitness of the current solution erratically increased.
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(c) Run 3

50 100 150 200 250 300 350 400
Model Columns (1 cell = 200 ft)

50

100

150

200

250

300

350

M
od

el
 R

ow
s (

1 
ce

ll 
= 

20
0 

ft)

6

5 43
2

1

Total Output [ft3/yr] = 132523090.0

200

400

600

800

1000

Horizontal Hydraulic Conductivity [ft/day]

(d) Run 4

Figure 11: The best well-field solutions from each of the EO-WPP runs plotted against the horizontal hydraulic conductivity
for Layer 2. Wells are plotted with colored dots, where blue dots are the most productive wells, red dots are the least productive
wells, and green dots show wells with intermediate performance. The wells also are annotated with their fitness rank, where
”1” indicates the most productive well and ”6” indicates the least productive well. Notice that EO-WPP places wells near or
on sites with high horizontal hydraulic conductivity.
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